K-Means Clustering Using Principal Component Analysis (PCA) Indonesia Multi-Finance Industry Performance Before and During Covid-19

Sri Mulyaningsih, Jerry Heikal

Abstract


The cluster analysis within specific industry such as in multi finance indsutries is designed to be a tool for accelerating investment decisions, such as whether to buy, sell, or hold stocks in a way to construct an optimized portfolio. The purpose of the study was to apply cluster analysis on multi-finance stock data listed on the Indonesia Stock Exchange in the years 2019 and 2021, before and during Covid-19, using the PCA (Principal Component Analysis) K-means algorithm. The objective of this study is to classify stocks based on PCAs in order to assist investors in segmenting a multi-finance stocks cluster. The clustering is done on the 16 stocks registered in ISE using two-time windows: 2019 data where Covid-19 has not yet occurred and 2021 data where Covid-19 is still ongoing, and the firm is still in the recovery stage. The cluster analysis results show 12 companies worth investing in because they performed well. There is finding that  company that have unfavorable Covid-19 externalities since this cluster has worsening performance and is thus not advised as a stock investment. Meanwhile, the others company has neutral externalities because it remains in the same cluster in 2019 and 2021.


Keywords


PCA, K-Means, Clustering, Multi-finance, Covid-19, Investment

Full Text:

PDF

References


Bank Indonesia. (2020b). Laporan Perekonomian Indonesia 2019 “Sinergi, Transformasi, dan Inovasi Menuju Indonesia Maju.” https://www.bi.go.id/id/publikasi/laporantahunan/perekonomian/Documents/9_LPI2019.pdf.

BPS. (2020b). Statistik Pertumbuhan Ekonomi Indonesia Triwulan IV-2020. In Pertumbuhan Ekonomi Indonesia Triwulan IV-2020 No. 13/02/Th. XXIV, 5 Februari 2021 (Issue 17). https://www.bps.go.id/pressrelease/2020/02/05/1755/ekonomi-indonesia-2019- tumbuh-5-02-persen.html.

Dash, M., Liu, H., Scheuermann, P., & Tan, K. L. (2003). Fast hierarchical clustering and its validation. Data & Knowledge Engineering, 44(1), 109–138. doi:10.1016/ s0169-023x(02)00138-6.

Feng, Z., & Zhang, J. (2020). Nonparametric K-means algorithm with applications in economic and functional data. Communications in Statistics-Theory and Methods, 1-15.

Feng, G. F., Yang, H. C., Gong, Q., & Chang, C. P. (2021). What Is the Exchange Rate Volatility Response To COVID-19 and Government Interventions? Economic Analysis and Policy, 69, 705–719. https://doi.org/10.1016/j.eap.2021.01.018.

GAIKINDO. (2020). Tahun 2020: Wabah, Resesi Ekonomi, dan Turunnya Penjualan Mobil 48 Persen. https://www.gaikindo.or.id/wabah-resesi-ekonomi-danturunnya-penjualan-mobil-48-persen-pada-2020/#:~:text=Berdasarkan data Gabungan Industri Kendaraan,sepanjang 2020 hanya 532.027 unit.

He, P., Sun, Y., Zhang, Y., & Li, T. (2020). COVID–19’s Impact on Stock Prices Across Different Sectors—An Event Study Based on the Chinese Stock Market. Emerging Markets Finance and Trade, 56(10), 2198–2212. https://doi.org/10.1080/1540496X.2020.1785865.

International Labor Organization. (2020). Country policy responses: Australia. In International Labour Organization: COVID-19 and the world of work (Issue June). https://www.ilo.org/global/topics/coronavirus/country-responses/lang en/index.htm#JP.

Jain, A.K., Murty, M.N., & Flynn, P.J. (1999). Data Clustering: A review, ACM Computing Surveys, 31(3), 264-323. Doi:10.1145/331499.331504.

Kontan. (2020a). Bentuk Percadangan, BOPO Multifinance Terkerek ke 91.95% per Agustus 2020. https://www.ifsa.or.id/id/frame/news/3929.

Kontan. (2020b). Pembiayaan Multifinance Melorot 12.86% Per-Agustus 2020 Akibat Pandemi COVID-19. https://www.ifsa.or.id/id/frame/news/3910.

Kontan. (2020c). Per-Oktober 2020, Multifinance Restukturisasi Pembiayaan Imbas COVID-19 Rp. 140.2 T. https://www.ifsa.or.id/id/frame/news/3933.

Kontan. (2021a). Piutang Pembiayaan Multifinance Tertekan Jadi Rp. 375.91 Triliun di November 2020. https://www.ifsa.or.id/id/frame/news/3954

Kuncheva, L. I. (2014). Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons.

Mohammad Jafarzadegana, Faramarz Safi-Esfahani, Zahra Beheshti. (2019). Combining hierarchical clustering approaches using the PCA method, https://doi.org/10.1016/j.eswa.2019.06.064.

OJK. (2019). Statistik Lembaga Pembiayaan 2019. https://www.ojk.go.id/id/kanal/iknb/data-dan-statistik/lembagapembiayaan/Documents/Pages/Buku-Statistik-Lembaga-Pembiayaan-2019/Buku Statistik Lembaga Pembiayaan 2019.pdf.

OJK. (2020). Statistik Lembaga Pembiayaan 2020. https://www.ojk.go.id/id/kanal/iknb/data-dan-statistik/lembaga-pembiayaan/Pages/Statistik-Lembaga-Pembiayaan-Periode-Desember-2020.aspx.

OJK. (2021). Statistik Lembaga Pembiayaan 2021. https://www.ojk.go.id/id/kanal/iknb/data-dan-statistik/lembaga-pembiayaan/Pages/Statistik-Lembaga-Pembiayaan-Periode-Desember-2021.aspx.

OJK. (2022). Statistik Lembaga Pembiayaan 2022. https://www.ojk.go.id/id/kanal/iknb/data-dan-statistik/lembaga-pembiayaan/Pages/Statistik-Lembaga-Pembiayaan-Periode-April-2022.aspx.

Oxfordbusinessgroup. (2021). Indonesia Covid-19 Response Report. https://oxfordbusinessgroup.com/blog/jade-currie/focus-reports/report-will-covid-19-pandemic-reshape-indonesia-s-multifinance.

Parra, P. Y., Hauenstein, C., & Oei, P.-Y. (n.d.). The Death Valley of Coal - Modelling COVID-19 Recovery Scenarios for Steam Coal Markets.

Shen, H., Fu, M., Pan, H., Yu, Z., & Chen, Y. (2020a). The Impact of the COVID-19 Pandemic on Firm Performance. Emerging Markets Finance and Trade, 56(10), 2213–2230. https://doi.org/10.1080/1540496X.2020.1785863.

Zhang, W., & Hamori, S. (2021). Crude Oil Market and Stock Markets During the COVID-19 Pandemic: Evidence From the US, Japan, and Germany. International Review of Financial Analysis, 74(February), 101702.




DOI: https://doi.org/10.21776/ub.apmba.2022.011.02.1

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.